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Background: Injection using needle and syringe (N&S) is the most widely used method for vaccination,
but requires trained healthcare workers. Fear of needles, risk of needle-stick injury, and the need to
reconstitute lyophilised vaccines, are also drawbacks. The Nanopatch (NP) is a microarray skin patch
comprised of a high-density array of microprojections dry-coated with vaccine that is being developed
to address these shortcomings. Here we report a randomised, partly-blinded, placebo-controlled trial that
represents the first use in humans of the NP to deliver a vaccine.
Methods: Healthy volunteers were vaccinated once with one of the following: (1) NPs coated with split
inactivated influenza virus (A/California/07/2009 [H1N1], 15 mg haemagglutinin (HA) per dose), applied
to the volar forearm (NP-HA/FA), n = 15; (2) NPs coated with split inactivated influenza virus (A/
California/07/2009 [H1N1], 15 mg HA per dose), applied to the upper arm (NP-HA/UA), n = 15; (3)
Fluvax� 2016 containing 15 mg of the same H1N1 HA antigen injected intramuscularly (IM) into the del-
toid (IM-HA/D), n = 15; (4) NPs coated with excipients only, applied to the volar forearm (NP-placebo/FA),
n = 5; (5) NPs coated with excipients only applied to the upper arm (NP-placebo/UA), n = 5; or (6) Saline
injected IM into the deltoid (IM-placebo/D), n = 5. Antibody responses at days 0, 7, and 21 were measured
by haemagglutination inhibition (HAI) and microneutralisation (MN) assays.
Findings: NP vaccination was safe and acceptable; all adverse events were mild or moderate. Most sub-
jects (55%) receiving patch vaccinations (HA or placebo) preferred the NP compared with their past expe-
rience of IM injection with N&S (preferred by 24%). The antigen-vaccinated groups had statistically higher
HAI titres at day 7 and 21 compared with baseline (p < 0.0001), with no statistical differences between
the treatment groups (p > 0.05), although the group sizes were small. The geometric mean HAI titres
at day 21 for the NP-HA/FA, NP-HA/UA and IM-HA/D groups were: 335 (189–593 95% CI), 160 (74–345
95% CI), and 221 (129–380 95% CI) respectively. A similar pattern of responses was seen with the MN
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assays. Application site reactions were mild or moderate, and more marked with the influenza vaccine
NPs than with the placebo or IM injection.
Interpretation: Influenza vaccination using the NP appeared to be safe, and acceptable in this first time in
humans study, and induced similar immune responses to vaccination by IM injection.

� 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Most vaccinations are performed by injection using the needle
and syringe (N&S). However, this method has drawbacks, including
fear of needles, risk of needle-stick injury, the need for safe dis-
posal of sharps waste, the need to reconstitute lyophilised vacci-
nes, and the requirement for healthcare professionals to
administer injections. Several groups are developing microarray
patches (MAPs) for vaccine delivery to overcome these limitations
[1]. Various MAP formats have been tested extensively for vaccine
delivery in preclinical models [2]. MAPs have also been evaluated
in clinical trials for delivery of non-vaccine drugs [3], and in a lim-
ited number of clinical studies evaluating the tolerability and
acceptability of MAPs, but without vaccine antigen [4–7]. However
to date, only two clinical studies using MAPs to deliver a vaccine to
human skin have been published, both of which used dissolving
microneedles (DMNs) and trivalent split influenza virus vaccines
[8,9].

Vaxxas Pty Ltd is developing the NanopatchTM (NP), a MAP with
a high density of solid microprojections onto which the vaccine
formulation is dispensed and dried. The current configuration of
the NP used and its applicator were identical to those studied pre-
viously [7]. In preclinical studies, the NP has been shown to deliver
vaccine to the viable epidermis and dermis, and to be dose-sparing
[10–14] and adjuvant sparing [15] compared with N&S IM delivery.
The high density of microprojections might have a physical
immune-enhancing effect, resulting in dose-sparing [11] but this
feature means that high velocity application with an applicator is
required to achieve skin penetration. The safety and tolerability
of the NP (without vaccine) was recently evaluated in humans.
NPs were found to be safe and well-tolerated, and preferred to
N&S by the majority of subjects [7]. Here we report the first clinical
study evaluating vaccine delivery with the NP.

2. Methods

2.1. Nanopatch manufacture

The NP and applicator were identical to those used in a previous
study [7]. Briefly, NPs were manufactured from silicon wafers, dry-
etched, and diced to give individual patches of 10 � 10 mm with
microprojection arrays (10,000/cm2) of 250 mm length (Fig. 1A
and B). The separate applicator was a hand-held spring-powered,
auto-disabling device (Fig. 1C and D). The applicator delivered
NPs onto the skin at a velocity of 20 m/s.

2.2. Vaccine

Vaccine-coated NPs for the NP-HA/FA and NP-HA/UA groups
were produced in an aseptic process. cGMP-grade, monovalent,
inactivated, split influenza A/California/07/2009 (H1N1)-like virus
antigen (Seqirus Pty Ltd, Australia. MPH Lot # M09061498100V)
was combined with excipients: 1% w/v hypromellose (Shin-Etsu
Chemical Company Ltd, Japan); 0.72% w/v trehalose (as dihydrate)
(Pfanstiehl, Germany); and Dulbecco’s phosphate-buffered saline
(DPBS) (Sigma Aldrich, USA) to give a final formulation of 0.976 m
g/mL haemagglutinin (HA). The resulting solution (41 mL, containing
40 mg HA) was applied onto each NP and dried using sterile filtered
nitrogen [16]. Preclinical and in vitro studies demonstrated that
approximately 20% (i.e. approximately 8 mg) of the vaccine was
delivered into the skin, with the rest of the material remaining
on the base of the NP [17]. Placebo NPs (for the NP-placebo/FA
and NP-placebo/UA groups) were coated with formulation excipi-
ents without antigen and gamma-sterilised (�25 kGy, Steritech,
Australia). Following coating, NPs were placed into aluminium
MediCan containers (Amcor, UK), foil-sealed, and stored at 2–8 �C
before use (Fig. 1C). The A/California/07/2009 HA antigen coated
onto NPs was shown to be stable (the average HA content of coated
NPs was �70 and �130% of the potency of the original coating
solution) for �3 months at 2–8 �C following coating onto NPs by
enzyme-linked immunoassay [18]. The investigational A/Califor-
nia/07/2009 (H1N1) vaccine on the NP met its target specifications
and was administered to patients within three months of
production.

The vaccine for the IM-HA/D group was the commercially-
available trivalent Fluvax� 2016 Southern hemisphere formulation
(Seqirus Pty Ltd, Australia batch number 0906-46202), containing
A/California/07/2009 (H1N1-like), A/New Caledonia/71/2014
(NYMC X-257A) (H3N2-like) and B/Brisbane/60/2008, all at 15 lg
HA per dose. Pre-filled syringes containing sterile saline solution
(0.9% sodium chloride), were provided by Q-Pharm Pty Ltd (Aus-
tralia, lot 0906-46202) as the IM placebo (for the IM-placebo/D
group). The vaccine was within its shelf-life when used in the
study.
2.3. Trial subjects and study design

The study was approved by the QIMR-Berghofer Medical
Research Institute (Brisbane, Australia) Human Research Ethics
Committee, and conducted in accordance with the National State-
ment of Ethical Conduct in Human Research (2007), the Australian
National Health and Medical Research Council guidelines, and
Good Clinical Practice (CPMP/ICH/135/95), as adopted by the Ther-
apeutic Goods Administration (2000). Written informed consent
was obtained from all participants. The trial was registered with
Australian New Zealand Clinical Trials Registry (ANZCTR.org.au),
trial ID ACTRN12616000880448. Universal Trial Number U1111-
1184-5260.

The study was restricted to fair-skinned subjects (types I, II or III
on the Fitzpatrick scale) [19], to facilitate clear observation of the
skin response. Exclusion criteria included influenza vaccination
or known influenza infection during the previous year (to minimise
baseline antibody titres).

The study was a randomized, partly-blinded, placebo-controlled
trial. Healthy females and males, aged 18–45 years, non-pregnant
and non-nursing (N = 61), with a BMI in the range of 18–30 kg/
m2 were randomly allocated into one of six vaccination groups:
(1) NPs coated with inactivated split influenza virus (A/Califor-
nia/07/2009 (H1N1), 15 mg haemagglutinin (HA) per dose), applied
to the volar forearm (NP-HA/FA), n = 15; (2) NPs coated with the
same inactivated split influenza virus (A/California/07/2009
(H1N1), 15 mg HA per dose), applied to the upper arm, above the
acromial prominence of the deltoid muscle, (NP-HA/UA), n = 15;
or (3) Fluvax� 2016 containing 15 mg of the same H1 HA antigen
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Fig. 1. Images of the Nanopatch (NP). (A). The NP, a high-density array of microprojections (10,000 projections/cm2, 250 mm in length). The external dimensions of the NP are
1 cm � 1 cm. (B) Scanning electron micrograph (SEM) showing the micro-projections of the NP. (C) NPs were loaded into applicators by pushing the applicator directly into
the open can. The NP has a metal insert in the base that attaches to, and is held in place to the applicator via a low-strength magnet in the applicator, allowing ‘hands-free’
removal of the NP from the MediCan. (D) Attachment of the NP onto forearm skin after application with the spring-loaded applicator. The NP’s microprojections are
embedded in the skin, which provides sufficient resistance to hold the NP in place until it is removed. No adhesive or patch is required to keep the NP in place. A different
applicator was used for each subject in the study.
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injected intramuscularly (IM) into the deltoid (IM-HA/D), n = 15;
(4) NPs coated with excipients only, applied to the volar forearm
(NP-placebo/FA), n = 5; (5) NPs coated with excipients only applied
to the upper arm (NP-placebo/UA), n = 5; or (6) Saline injected IM
into the deltoid (IM-placebo/D), n = 5 (Fig. 2).
2.4. Study procedures

Subjects received a single vaccination at day 0, given to the non-
dominant arm. Application sites were selected to be free from scar-
ring, tattoos, skin conditions, and sunburn. The area for application
was marked, swabbed using a 70% ethanol swab and pho-
tographed. Two NPs were administered to deliver the 15 mg dose,
applied to the same site, at least 4 cm apart. The NP was applied
to the skin with the applicator and left on the skin for 2 min before
being removed. All NP applications were performed by the same
nurse following training.

Subjects were monitored by clinic safety assessment visits at
days 0, 3, 7, 21, and 28; and phone calls at days 1, 2, and 14. On
day 0, all vaccination sites were assessed at 10 min, 1 and 2 h after
NP or IM administration. Photographs of the application sites were
taken at every clinic review. Skin reactions were assessed for: ery-
thema (0 = none; 1 = very slight; 2 = well-defined; 3 = moderate to
severe; 4 = severe [beet red]) and oedema (0 = none; 1 = very
slight; 2 = slight; 3 = moderate [raised approximately 1 mm]; 5 =
severe), and a skin irritation index (SII) was calculated, as the
sum of the erythema and oedema scores as described previously
[7]. Induration, bruising, skin flaking, discolouration, itching and
bleeding were also assessed. Pain scores were collected 10 min
after the patch removal and at all outpatient-assessments using a
visual analogue scale (VAS, QPharm) with 0 = no pain; 5 = moder-
ate pain; 10 = worst pain possible.
2.5. Qualitative acceptability assessment

Acceptability data were collected via an investigator-blinded,
semi-structured interview (Supplementary Table 4) with open
questions conducted between 1 and 2 h post vaccination and again
at the end of study. Interviews were digitally recorded, transcribed
verbatim, and de-identified prior to analysis. Potential subject bias
against N&S was addressed as part the screening questionnaire [7].
2.6. Immunogenicity evaluation

Serum samples were collected for testing in haemagglutination
inhibition (HAI) and microneutralisation (MN) assays (360biolabs
Pty Ltd, Australia) on days 0 (pre-vaccination), 7, and 21.
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Fig. 2. Trial profile. Treatment group abbreviations: NP-HA/FA – NPs coated with inactivated split influenza virus (A/California/07/2009 (H1N1), 15 mg haemagglutinin (HA)
per dose), applied to the volar forearm; NP-HA/UA – NPs coated with inactivated split influenza virus (A/California/07/2009 (H1N1), 15 mg HA per dose, applied to the upper
arm; IM-HA/D – Fluvax� 2016 containing 15 mg of the same H1 HA antigen injected intramuscularly (IM) into the deltoid; NP-placebo/FA – NPs coated with excipients only,
applied to the volar forearm; NP-placebo/UA – NPs coated with excipients only applied to the upper arm; IM-placebo/D – saline injected IM into the deltoid. Notes: 116
subjects in the NP-HA/FA group contributed data to the safety assessment at day 0. 214 subjects in the IM-HA/D group contributed safety data at day 0.
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Serum samples for HAI were treated with receptor destroying
enzyme (Denka Seiken Co Ltd, Japan) and adsorbed to washed,
packed turkey red blood cells (TRBC) for 30 min at room tempera-
ture (RT). TRBC were diluted to 1% v/v in PBS prior to testing. Two-
fold serum dilutions starting from 1:10 were prepared and 4 HA
Units/25 mL of A/California/07/2009 virus (WHO Collaborating Cen-
tre, Australia) were added to each test well and incubated for 45
min at RT. TRBC were added and incubated for a further 30 min
at RT. The HAI titre was the reciprocal of the highest dilution of
the sera that completely inhibited agglutination of TRBC by the
virus.

MN assays were conducted according to published methodol-
ogy [20]. Briefly, serum samples were heat inactivated at 56 �C
for 30 min. Twofold serum dilutions starting from 1:100 were pre-
pared and 100 TCID50 of A/California/07/2009 virus (WHO Collab-
orating Centre, Australia) were added to each test well.
Prevention of infection of MDCK cells by A/California/07/2009 virus
was tested using ELISA detection of influenza nucleoprotein.
2.7. Statistical analysis

Intragroup comparisons were performed using Wilcoxon
signed-rank test to assess the immune responses post treatment,
and intergroup comparisons were made by using the non-
parametric Kruskal-Wallis test (One-way ANOVA on ranks).
Mann-Whitney test was used to compare intergroup skin irritation
index scores in response to vaccination or application site. These
tests were used to assess statistical differences, where significance
is assumed p < 0.05. Analyses were performed with GraphPad
PRISM version 7.03 (La Jolla, USA).

2.8. Role of the funding source

Vaxxas served as the sponsor and took main responsibility for
design and execution of the study. The corresponding author
(AHF) had full access to all the data in the study and final respon-
sibility for the decision to submit for publication.
3. Results

Between 29 June and 12 August 2016, 61 subjects were
enrolled, randomly assigned to a treatment group and were vacci-
nated. Thirteen subjects out of 74 volunteers screened were not
enrolled into the study (Fig. 2). There were no substantial differ-
ences between the three groups in terms of demographic profile
(Supplementary Table 1).



Table 1
Number (percent) of adverse events by treatment and group.

Event NP-HA/FA
(N = 16)*

NP-HA/UA
(N = 15)

IM-HA/D
(N = 15)

Overall, vaccine
groups
(N = 46)

NP-placebo/FA
(N = 5)

NP-placebo/UA
(N = 5)

IM-placebo/D
(N = 5)

Overall, placebo
groups
(N = 15)

Any 8 (50) 9 (60) 5 (33) 22 (48) 1 (20) 4 (80) 3 (60) 8 (53)
Lymph-adenopathy 0 (0) 0 (0) 1 (7) 1 (2) 0 (0) 0 (0) 0 (0) 0 (0)
Application site pruritus 2 (13) 0 (0) 0 (0) 2 (4) 0 (0) 0 (0) 0 (0) 0 (0)
Axillary pain 1 (6) 0 (0) 0 (0) 1 (2) 0 (0) 0 (0) 0 (0) 0 (0)
Fatigue 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (20) 1 (7)
Sinusitis 1 (6) 0 (0) 0 (0) 1 (2) 0 (0) 0 (0) 0 (0) 0 (0)
URTI 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (60) 0 (0) 3 (20)
Viral URTI 0 (0) 2(13) 0 (0) 3 (4) 0 (0) 0 (0) 1 (20) 1 (7)
Joint injury 1 (6) 0 (0) 0 (0) 1 (2) 0 (0) 0 (0) 0 (0) 0 (0)
Myalgia 0 (0) 1 (6) 0 (0) 1 (2) 0 (0) 0 (0) 0 (0) 0 (0)
Headache 0 (0) 2 (13) 4 (27) 6 (13) 1 (20) 0 (0) 1 (20) 2 (13)
Abortion, spontaneous 1 (6) 0 (0) 0 (0) 1 (2) 0 (0) 0 (0) 0 (0) 0 (0)
Pregnancy 1 (6) 0 (0) 0 (0) 1 (2) 0 (0) 0 (0) 0 (0) 0 (0)
Oropharyngeal pain 1 (6) 0 (0) 0 (0) 1 (2) 0 (0) 1 (20) 0 (0) 1 (7)
Throat irritation 0 (0) 0 (0) 0 (0) 0 (0) 1 (20) 0 (0) 0 (0) 1 (7)

Group abbreviations: NP-HA/FA – NPs coated with inactivated split influenza virus (A/California/07/2009 [H1N1], 15 mg haemagglutinin [HA] per dose), applied to the volar
forearm; NP-HA/UA – NPs coated with inactivated split influenza virus (A/California/07/2009 [H1N1], 15 mg HA per dose, applied to the upper arm; IM-HA/D – Fluvax� 2016
containing 15 mg of the same H1N1 HA antigen injected intramuscularly (IM) into the deltoid; NP-placebo/FA – NPs coated with excipients only, applied to the volar forearm;
NP-placebo/UA – NPs coated with excipients only applied to the upper arm; IM-placebo/D – saline injected IM into the deltoid.
URTI: upper respiratory tract infection.

* One subject withdrew after day 3 and was replaced, but contributed no data for subsequent assessments.
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3.1. Summary of adverse events

A total of 40 adverse events (AEs) were reported by 30 subjects
(Table 1). Of the subjects receiving vaccine, 8 of 16 (50%) NP-HA/FA
subjects, 9 of 15 (60%) NP-HA/UA subjects, and 5 out of 15 (33%)
IM-HA/D subjects reported at least one AE, and a similar propor-
tion of placebo recipients, 8 of 15 (53%), reported at least one AE.
Headaches were the most common AE considered to be related
to treatment, reported by 6 (13%) subjects receiving vaccine and
2 (13%) subjects in the placebo groups. All AEs were mild or mod-
erate with the exception of one serious AE, a spontaneous abortion
that was not considered related to treatment. No clinically signifi-
cant events were observed with respect to clinical laboratory tests,
vital signs or aural temperature. There was also one severe AE, a
soft tissue injury due to bicycle accident. This was considered to
be unrelated to vaccination, but the subject withdrew from the
study.
Fig. 3. Representative images for time course of skin reactions at Nanopatch (NP) applicat
at two adjacent sites on the forearm (FA). The upper panels show the skin reaction follow
the skin reaction following application of A/California/07/2009-coated NPs (NP-HA/FA g
3.2. NP-application-site reactogenicity and resolution

Examples of application site reactions and resolution following
application of a placebo (excipient-coated) NP and vaccine-coated
NP are shown in Fig. 3. The initial erythema associated with pla-
cebo NP application typically faded to an area of mild discoloura-
tion between 2 h and day 3 after removal of the NP. This was
consistent with previous observations with placebo NPs [7]. In con-
trast, the skin response following HA-coated NP application peaked
at day 3 and faded between day 7 and day 28.

Analysis of the skin irritation index (SII) scores indicated that
the erythema response predominated over oedema and lasted
longer (Fig. 4A and B). The erythema seen with the placebo NPs
decreased steadily following removal of the NP, but persisted
longer with the HA-NPs, with significantly higher erythema scores
for the HA-NPs compared with the placebo at all timepoints from
day 3 onwards after application (Fig. 4C). Comparing the skin
ion site. Photographs of time course of skin reactions observed with two NPs applied
ing application of placebo patches (NP-placebo/FA group). The bottom panels show
roup).
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Fig. 4. Skin Response to Vaccination by Nanopatch (NP). Combined Skin Irritation Index Score (SII); erythema (scored 0–5) plus oedema (scored 0–5) for NP applications sites
for (A) NP-HA/FA and NP-HA-UA recipients, and (B) NP-placebo/FA and NP-placebo/UA recipients. (C) Erythema scores for active NP applications (NP-HA/FA+NP-HA/UA)
compared with placebo (NP-placebo/FA+NP-placebo/UA). (D) Comparison of erythema scores for FA applications (NP-HA/FA+NP-placebo/FA) compared with UA applications
(NP-HA/UA+NP-placebo/UA). Columns represent the mean scores; error bars show the standard deviation. p values calculated by the non-parametric two-tailed Mann-
Whitney Test.
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response at application sites on the forearm or upper arm at each
timepoint, there was a greater decrease in erythema at the upper
arm sites at days 21 and 28 (Mann-Whitney Test, p < 0.05)
(Fig. 4D). Mild erythema was observed around the IM injection site
on the day of injection, but in general the IM injections were well
tolerated.

The application sites were also monitored for spreading redness
around the application site and colouration, itching, skin flaking,
bleeding, induration, seepage and bruising (Supplementary
Table 2). Mild itching was recorded by 13% and 7% of NP-HA/FA
and NP-HA/UA recipients, respectively, at day 7. Some subjects
(13% and 33% in the NP-HA/FA and NP-HA/UA groups, respectively)
experienced mild or moderate skin flaking at the area of skin
directly under the NP application site at day 3, and at day 7 (67%
and 87% in the NP-HA/FA and NP-HA/UA groups, respectively). Pla-
cebo recipients also experienced mild or moderate skin flaking
(60% of subjects in the NP-placebo/FA and NP-placebo UA groups).
It was not seen at later timepoints. Only one subject (NP-placebo/
FA) experienced induration; classified as mild. Only one subject
(NP-HA/FA) recorded pin-point bleeding from 10 min to 2 h post-
application.

All application site reactions recorded were mild or moderate,
with the exception of a single subject with ‘severe’ colouration at
10 min after application (NP-HA/FA group) graded as 3 on a scale
of 0 to 5. All patches and microprojections appeared intact after
removal from skin as assessed by scanning electron microscopy
(SEM) (data not shown).

3.3. Pain at application site

Self-reported pain scores 10 min after NP application or IM
injection were low overall (Fig. 5). The mean scores for the groups
receiving vaccine were 1.1 (0.51–1.61 95% CI), 0.9 (0.24–1.50 95%
CI). 0.8 (�.04 to 1.64 95% CI) for the NP-HA/FA, NP-HA/UA and
IM-HA/D groups respectively. Scores in placebo recipients were
similar; 0.8 (�0.16 to 1.76 95% CI), 0.8 (�0.16 to 1.76 95% CI)
and 0 (no pain recorded) for the NP-placebo/FA, NP-placebo/UA
and IM-placebo/D groups. Overall 55% of NP-HA/FA and NP-HA/
UA applications were scored as ‘0’ (no pain), compared to 60% of
NP-placebo/FA and NP-placebo/UA applications, 73% of the IM-
HA/D vaccinations, and 100% IM-placebo/D injections. The highest
pain score recorded was ‘6’, for an IM vaccination, 10-min post
administration. Only one subject experienced pain later than 10
min after vaccination, recording a score of ‘2’ at 1 h in the NP-
HA/FA group.

3.4. Acceptability questionnaire and interviews

The questionnaire and interview results were consistent with
those obtained in the previous study with NPs without antigen



Fig. 5. Pain scores. Pain arising from vaccination with either the intramuscular (IM)
injection or the Nanopatch (NP) groups was recorded using a self-assessment
analogue scale (from 0 = no pain, 5 = moderate pain, to 10 = worst pain imaginable)
at 10 min after application of NPs or IM injection. The coloured symbols represent
individual subject scores, the horizontal bar shows the mean score for the group
and the error bars shown 95% CI.
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[7]. Most subjects (55%) preferred the NP compared to their previ-
ous experience of N&S injection, which was preferred by 24%, with
the remaining subjects having no preference or not indicating a
preference. Reasons for opting for N&S were to avoid the red mark
left by the NP, or due to itching at the application site, or because
the N&S was more familiar.
3.5. Immunogenicity

HAI titre was used as the primary measure of immunogenicity.
All subjects were included in the analysis, irrespective of their
baseline HAI titres at day 0. There was an increase in the HAI geo-
metric mean titre (GMT) compared to baseline for the NP-HA/FA,
NP-HA/UA and IM-HA/D groups at day 7 (p � 0.0022 in all groups)
and day 21 (p < 0.0001 in all groups) post vaccination, while there
was no increase in HAI titre in any of the placebo groups following
vaccination (Fig. 6A). The HAI GMTs at day 21 for the NP-HA/FA,
NP-HA/UA and IM-HA/D groups were: 335 (189–593 95% CI), 160
(74–345 95% CI), and 221 (129–380 95% CI) respectively (Supple-
mentary Table 3). There was no statistical difference in the HAI
GMTs at day 21 between the NP-HA/FA, NP-HA/UA and IM-HA/D
groups for each binary comparison between groups. The percent-
age of subjects seroconverting after treatment (i.e. with HAI titre
<10 prevaccination and �1:40 at day 21, or showing a 4-fold
increase in titre following vaccination) were: NP-HA/FA 12 out of
15 (80%); NP-HA/UA 9 (60%); IM-HA/D 12 (80%). There were no
seroconversions in any of the placebo groups (Supplementary
Table 3).

MN assays were performed to assess levels of functional anti-
influenza antibodies (Fig. 6B). As with the HAI results, all groups
receiving the vaccine showed an increase in MN titres at days 7
and day 21. The MN GMT at day 21 for the NP-HA/FA, NP-HA/UA
and IM-HA/D groups were: 6703 (3534–12,713, 95% CI), 2211
(1057–4624, 95% CI), and 4032 (1854–8767, 95% CI) respectively
(Supplementary Table 3) and there was no statistical difference
in the GMT between the different treatment groups. There was
no increase in MN titre in any of the placebo groups following vac-
cination. In both the HAI and MN assays, there was a slight trend
for the NP-HA/FA group titres to be higher than those for the NP-
HA/UA or IM-HA/D groups, but this was not statistically significant.
4. Discussion

This study was the first use of the NP to deliver a vaccine anti-
gen to the skin of human volunteers. Therefore it is encouraging
that no clinically significant local or systemic adverse events were
observed that were considered to be related to NP vaccinations. It
was however expected that reactogenicity at the site of NP applica-
tion would be more apparent than seen with IM injection due to
the vaccine being delivered very close to the skin surface. We
decided to study local skin responses in detail to understand their
impact on the acceptability of vaccination by NPs. There were more
local reactions at the site of NP application than were seen with IM
injection as expected, but these were self-limiting and mild or
moderate in intensity. It is likely that any erythema and itchiness
reflected inflammatory processes in the skin involved in the induc-
tion of immune responses, which would be more visible with NP
delivery than IM injection as they occur closer to the surface of
the skin. Tenderness and pain are generally observed with IM
injection of vaccines. Erythema at the NP-application site took
longer to resolve with HA-antigen-containing NPs compared with
placebo NPs, possibly due to the initial innate inflammatory
response to the antigen, and/or activation of antigen specific T cells
resident in the skin. Hirobe et al. [8] also reported peak application
site redness 2 days after application of DMNs, that lasted for at
least 21 days, and then a second patch was applied. It was not
reported whether this resulted in a reaction at the original patch
application site. Overall, the tolerability and acceptability findings
with NPs were similar to those seen with uncoated and placebo
NPs [7], and similar to those reported for DMNs without antigen
by Arya et al. [6], and with influenza antigen [9].

The scores for pain at the application site appeared to be higher
with the HA-antigen-containing NPs than the placebo in our study.
However, the majority of subjects did not find NP administration
painful, and a slight majority preferred NP to N&S injections,
potentially reducing resistance to vaccination. The short wear time
for NPs (2 min) could be particularly advantageous in this regard,
making it more acceptable to vaccinees and healthcare systems
than MAPs with longer wear times (20 min–6 h) [8,9], as it would
be less disruptive to standard work patterns. Future studies will
investigate whether the NP wear time can be further reduced
which might further increase compliance [21].

The HAI and MN titres induced were not significantly different
between the different modes of vaccination, indicating that, at the
standard dose of 15 mg HA, the antibody responses induced by the
NP were similar to those induced by IM injection, with the caveat
that the group sizes in this study were small. A single dose level
of HA was selected for the study (estimated to be a delivered dose
of 15 mg), so it was not possible to determine whether NP adminis-
tration resulted in dose-sparing, as seen in preclinical models [10–
15]. Some of the analyses (GMT and fold-increase in GMT, Supple-
mentary Table 3) suggested higher antibody responses in the fore-
arm NP group than the IM group, and lower titres in the upper arm
NP group; these differences were not statistically significant how-
ever. Similar results were seen with the MN and HAI assays,
although the MN GMTs were higher than the HAI titres, as has been
observed by other groups [22]. The overall finding that the MAP-
induced antibody responses were similar inmagnitude to those fol-
lowing IM injection, was similar to the results reported by Hirobe
et al. [8] and Rouphael et al. [9]. These two studies used DMNs
and involved longer patch wear times than needed for the NP.

This study had several limitations. For this initial test of the NP
in humans, a monovalent influenza vaccine (H1N1) was used for
simplicity, rather than the tri-valent formulation administered
IM. Thus, immune responses to NP-delivered vaccine were mea-
sured to only one influenza subtype. It is also possible that the
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Fig. 6. Haemagglutination inhibition (HAI) and microneutralising (MN) antibody titres following vaccination with either A/California 07/2009 H1N1 vaccine or placebo. (A)
and (B) HAI titres induced by A/California 07/2009 H1N1 vaccine or placebo respectively. The seroprotective titre of 1:40 is shown by the broken line. (C) and (D) MN titres
induced by A/California 07/2009 H1N1 vaccine or placebo respectively. Symbols represent responses from individual subjects; the heavy solid bars represent the GMT and the
error bars show the 95% confidence intervals. Intragroup comparisons by Wilcoxon signed-rank test. Intergroup comparisons by Kruskal-Wallis test.
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response to the H1N1 antigen given IM would be different when
administered as a monovalent or trivalent formulation, although
we are not aware of any data to suggest this might be the case.
In addition, assays were not performed to determine whether
NPs induced qualitatively different immune responses, as have
been reported before with MAPs or transcutaneous delivery
[23,24]. It should be stressed that the number of subjects in each
group was small, therefore any conclusions regarding the relative
immunogenicity of the different treatment groups need to be made
in this context of this limitation. These points will be investigated
and addressed in future, larger clinical studies, as will the longevity
of the immune response. Finally, although MAPs offer the potential
for enhanced vaccine thermostability, this was not explored in
detail in this study. In a previous study, influenza vaccine coated
onto NPs in a similar formulation to the one used in this study,
was shown to be stable for at least 6 months at room temperature
when stored protected from moisture [25].

Given the encouraging immunogenicity and acceptability data
from this and other recent clinical MAP vaccination studies
[6,7,9], the challenge now facing all vaccine MAP developers is to
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scale-up manufacturing processes to enable production millions of
devices at an acceptable cost of goods. To this end, a number of key
technological developments have been put in place for NPs since
this study was conducted. A new method is used for NP vaccine
coating which targets the tips of the microprojections, rather than
the whole NP (as in this study), so that >80% of the vaccine payload
is delivered to the skin (unpublished data); the current, relatively
low delivery efficiencies obtained with the original version of the
device as used in this study were an obvious limitation to the tech-
nology. In addition, NPs are now produced using medical-grade
synthetic polymers rather than silicon, reducing the cost of goods
of MAP production significantly. Finally, in this study, a separate
applicator was used, whereas in the commercial embodiment of
the device, the NP and applicator will be in an integrated, single-
use device.

5. Conclusion

In this small first time in human study, the NP vaccine delivery
system appeared to be safe, well tolerated by the subjects receiving
the vaccination, and induced similar immune responses as IM
injection. The results suggest that the NP has the potential to be
an effective approach for vaccination with seasonal influenza and
other vaccines.
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